Two definability results in the equational context

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The equational definability of truth predicates

By a ‘logic’ we mean here a substitution-invariant consequence relation on formulas over an algebraic signature. Propositional logics are obvious examples, but even first order logic can be re-formulated in this way. The notion of an ‘algebraizable’ logic was made precise in the 1980s, mainly by Blok and Pigozzi, who provided intrinsic characterizations of the logics that are indeed algebraizab...

متن کامل

Definability for Equational Theories of Commutative Groupoids †

We find several large classes of equations with the property that every automorphism of the lattice of equational theories of commutative groupoids fixes any equational theory generated by such equations, and every equational theory generated by finitely many such equations is a definable element of the lattice. We conjecture that the lattice has no non-identical automorphisms.

متن کامل

Definability in the lattice of equational theories of semigroups

We study first-order definability in the lattice L of equational theories of semigroups. A large collection of individual theories and some interesting sets of theories are definable in L . As examples, if T is either the equational theory of a finite semigroup or a finitely axiomatizable locally finite theory, then the set {T, T } is definable, where T ∂ is the dual theory obtained by invertin...

متن کامل

Definability in the Lattice of Equational Theories of Commutative Semigroups

In this paper we study first-order definability in the lattice of equational theories of commutative semigroups. In a series of papers, J. Ježek, solving problems posed by A. Tarski and R. McKenzie, has proved, in particular, that each equational theory is first-order definable in the lattice of equational theories of a given type, up to automorphism, and that such lattices have no automorphism...

متن کامل

Equational definability and a quasi-ordering on Boolean functions

Earlier work by several authors has focused on defining Boolean function classes by means of functional equations. In [10], it was shown that the classes of Boolean functions definable by functional equations coincide with initial segments of the quasi-ordered set (Ω,≤) made of the set Ω of Boolean functions, suitably quasi-ordered. Furthermore, the classes defined by finitely many equations co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1989

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1989-0975648-1